3B İzometrik Şekil Eşleme 3D Isometric Shape Correspondence
نویسندگان
چکیده
We address the problem of correspondence between 3D isometric shapes. We present an automatic method that finds the optimal correspondence between two given (nearly) isometric shapes by minimizing the amount of deviation from isometry. We optimize the isometry error in two steps. In the first step, the 3D points uniformly sampled from the shape surfaces are transformed into spectral domain based on geodesic affinity, where the isometry errors are minimized in polynomial time by complete bipartite graph matching. The second step of optimization, which is well-initialized by the resulting correspondence of the first step, explicitly minimizes the isometry cost via an iterative greedy algorithm in the original 3D Euclidean space. Our method is put to test using (nearly) isometric pairs of shapes and its performance is measured via ground-truth correspondence information when available.
منابع مشابه
Coarse-to-Fine Isometric Shape Correspondence by Tracking Symmetric Flips
We address the symmetric flip problem that is inherent to multiresolution isometric shape matching algorithms. To this effect, we extend our previous work which handles the dense isometric correspondence problem in the original 3D Euclidean space via coarse-to-fine combinatorial matching. The key idea is based on keeping track of all optimal solutions, which may be more than one due to symmetry...
متن کامل3d Face Recognition under Isometric Expression Deformations
In this paper, 3D face recognition under isometric deformation (induced by facial expressions) is considered. The main objective is to employ the shape descriptors that are invariant to (isometric) deformations to provide an efficient face recognition algorithm. Two methods of the correspondence are utilized for automatic landmark assignment to the query face. One is based on the conventional i...
متن کاملAlgorithms for 3D Isometric Shape Correspondence
There are many pairs of objects in the digital world that need to be related before performing any comparison, transfer, or analysis in between. The shape correspondence algorithms essentially address this problem by taking two shapes as input with the aim of finding a mapping that couples similar or semantically equivalent surface points of the given shapes. We focus on computing correspondenc...
متن کاملCoarse-to-Fine Combinatorial Matching for Dense Isometric Shape Correspondence
We present a dense correspondence method for isometric shapes, which is accurate yet computationally efficient. We minimize the isometric distortion directly in the 3D Euclidean space, i.e., in the domain where isometry is originally defined, by using a coarse-to-fine sampling and combinatorial matching algorithm. Our method does not require any initialization and aims to find an accurate solut...
متن کاملScale Normalization for Isometric Shape Matching
We address the scale problem inherent to isometric shape correspondence in a combinatorial matching framework. We consider a particular setting of the general correspondence problem where one of the two shapes to be matched is an isometric (or nearly isometric) part of the other up to an arbitrary scale. We resolve the scale ambiguity by finding a coarse matching between shape extremities based...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010